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An algorithm is formulated in the work for calculating the composition of coexisting liquid 
phases and of the critical point in a ternary system on the basis of a given dependence CE = 

= CE(x I' x2)' The calculation includes also the case when the overall composition of a hetero
geneous mixture is given for which the composition of the coexisting phases is to be found . 

When calculating liquid-liquid equilibrium in a ternary system if we know GE = 
= GE(X I , xJ, we must solve three nonlinear equations 

al(x l, X2) = al(ZI' Z2)' 

a2(X I, X2) = a2(ZI, Z2), 

a3(X I, X2) = a3(ZI' Z2), 

(1) 

where aJx t , X2) is the activity of the i-th component in the first phase and ai(ZI, 22) is 
the activity of the i-th component in the second, conjugate phase. For conciseness 
we shall use the symbol a1 = a l (2 1, 22)' and so on, in some cases. 

For a firmly chosen value of one variable of composition (e.g. XI)' we get the re
maining unknowns x 2 , 2 1 , 22 by solving the system of equations (1). 

Difficulties connected with the solution of system (1) are of several sorts: 

a) For a chosen value of one variable of composition (e.g. Xl), there need not be 
any solution of the system (1). To put it in another way, the straight line Xl = 
= (X1)chosen does not intersect at any point the binodal curve. 

b) Even with a suitable choice of Xl' the calculation procedure may converge 
to a so-called trivial solution (we do not consider here the critical point where this 
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682 Novak, Matous, Vonka, Pick: 

solution makes physical sense), when holds 

(2) 

There is obviously an indefinite number of such solutions . Besides these indefinitely 
many trivial solutions, there exists at least one physical solution at a suitable choice 

of Xl' when 

(3) 

which is looked for. An attempt to eliminate the trivial solution for certain types 
of dependences of activity on composition was made by Prochazka and coworkers!. 

c) For numerical solution of the system (1) we need to know a first approximation. 
An unsuitable first approximation can result in the divergence of iteration procedure 
or in the convergence to the trivial solution (Eq. 2). The range of the interval from 
which we can choose the first approximation, will depend considerably on the used 
form of equation and on the distance from the critical point. It is evident that the 
better the first approximation will be the more rapidly the solution of system (1) 
will converge. 

d) A specific point on the binodal curve is the critical point which, however, 
is to be determined by a special procedure and which the last part of this work 
is devoted to. 

Principle of the Method Proposed 

The proposed method rises from the assumption that the calculation of the physical 
solution of the system (1) will be the more rapid the more accurate the first approxi
mation will be. 

FlO.! 

Diagram of the Mutual Solubility of Com
ponents in a Ternary System 
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Liquid-Liquid Equilibrium 683 

Let us consider a ternary system depicted schematically in Fig. 1. Let us assume 
that we know one couple of points of coexisting phases on the equilibrium curve, 
i.e. the points with coordinates x~, x~ and z~, z~. Further we assume that we know 
the slopes of tangents to the equilibrium curve at these points, dx2/dx1 = SI and 

dz2/dz 1 = S2 · 
The approximation of a next point which should lie on the binodal curve is 

where 

(4) 

(5) 

(6) 

If we want to increase XI we choose the sign + or (5 > 0 in Eq. (6), in the opposite 
case the sign - or (5 < o. 

According to the Eqs (4) and (5), with a suitably chosen b, we obtain a very ac
curate approximation of the next point on the first branch of the binodal curve. 
For the calculation, of course, an approximation of the point (z I' Z2)1I is needed, too. 
One possibility would be to retain the values z~, z~. Knowing the siopeS2 = dz2/dz l 

and on the assumption that the tie-line slope to changes only very little, it is possible 
to improve the estimate even in this case. 
Then 

to = (z~ - x~)/(z~ - x~) ~ [(Z2)1I - (X2)1I]/[(Zl)1I - (X 1)1I] , (7) 

S2 = dz2/dz1 ~ [(Z2)1I - z~]/[(Zl)1I - zn . (8) 

By combining the relations (4)-(8) we obtain 

(9) 

(10) 

When applying Eqs (4), (5), (9) and (10) it IS necessary to determine the tangent 
slopes SI and S2 to the equilibrium curve. For these slopes one can find in the litera
ture2

- 4 the relations 

SI = dx2/dx l = -(Gll + t G12)/(G12 + t G22) , (11) 

or 

S2 = dz2/dz l = -(Gll + t (12)/(G12 + t (22) , (12) 
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where t is the slope of tie-line (defined beforehand), see Eq. (7). G11, Gl2, G22, 
and GLl, G12, G22 are the second order derivatives of the molar Gibbs energy G 
with respect to composition at constant temperature and pressure 

and so on . 

Gll = a2(C/RT)/axi; G12 = a2(C/RT)/ax l aX2 ; 

G22 = a2 (C/RT)/ax~; G11 = a2(C/RT)/azi ; 

(13) 

We have issued from the assumption that the composition of at least one couple 
of conjugate phases is known. However, if we have no information on the com
positions of the conjugate phases in the ternary system it is possible to choose the 
composition of coexisting phases in the binary system as the first approximation. 
For the slopes S 1 and S 2 to the binodal curve we get in this case the simple rela
tions 

lim dXl/dx[ -Gll/G12, (14) 
X2-+ 0 

limdz1/dz 1 = -GII/GI2. (15) 
Z2 .... 0 

Before passing to the solution of the system (1) itself, it is desirable to estimate 
the magnitude of (j in Eq. (6) with more precision. To this purpose we will utilize 
the results of the calculation of two equilibrium curves depicted in Fig. 2. The depen
dence of CE on composition is given by the relation (35) and hJ3 = 3. When -cakulat
ing we started with the binary mixture 1- 3 and the last calculated equilibrium com
positions are indicated by arrows with inscribed values of (j. On solving the system 
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FIG. 2 

The Effect of the Value of () on the Feasi
bility of Calculating the Coexisting Phases 

K Critical point. 
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Liquid-Liquid Equilibrium 685 

(1) further, we obtained the trivial solution. It is evident that by choosing sufficiently 
low values c5, it is possible to approach to the critical point as close as desired. 

During the calculations the number of iterations to the solution of system (1) 
was as well observed. At c5 = 0·05 four iterations were usually needed (an admissible 
error was 10- 4

). In the vicinity of the critical point or when estimating the ternary 
composition from binary data, the number of iterations was always higher. At c5 = 0·3 
the number of iterations rose on the average to 10. If these results should be generali
zed the value c5 = 0·05 to 0·1 is to be recommended. If we are not interested in a close 
proximity of the critical point it is possible to choose even c5 = 0·2 to speed up the 
computations. 

Solution of the System (1) 

By means of the relations (4), (5), (9) and (IO) a next couple of the compositions 
of coexisting phases on the binodal curve is estimated. Before passing to the solution 
of the system (1) it is necessary to choose a suitable variant. With respect to the mole 
fraction which will be held constant, we have four possibilities. Let us discuss now 
some variants. Let us consider Fig. 3a. If we start at the point A[x~, xn the next 
approximation will be the point B[x~ + tlx 1, x~ + tlX2J. As far as we should solve 

FIG. 3 

The Effect of the Shape 
of Binodal Curve 
on the Solvability 
of the System (16) 
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686 Novak, Matous, Voiika, Pick: 

the system (1) on the assumption that X2 = x~ + .1X2 = const we shall not find 
a solution (the numerical procedure will not converge or we shall obtain the trivial 
solution). These difficulties we will not encounter if we hold constant mole fraction 
of the first component when solving the system (1). 

In Fig. 3b an opposite alternative is illustrated , where on the contrary the choice 
x I = const fails. 

From these cases it is evident that the difficulties, when solving the system of equa
tions (1), may occur when: 

a) dx2 /dx I -> 0; we solve the system (I) for X2 = const. 

b) dX2/dxI -> 00; we solve the system (1) for XI = const. 

Therefore it is necessary to choose constant, for the solution of the system (I), 
that mole fraction which does not exhibit an extreme on the corresponding branch 
of the binodal curve. For the system in Fig. 3c it can be Xl' ZI' Z2 but in no case X2 

because we would not get behind the point E during solution. Another extreme case is 
presented in Fig. 3d. Here none of considered variables would be suitable. In such 
a case it is sometimes desirable to carry out a change of components. If we hold 
in this case the third component constant when solving the system (1) the computa
tion will take place without complications . 

Usually we know (at least) approximately the course of the binodal curve and 
therefore we can choose right a corresponding variant. A qualitative course of the 
binodal curve can be conceived on the basis of the knowledge of the critic~I point 
(see below), of the mutual solubility of pure components and of the limiting slopes 
determined by means of the relations (14) and (15). 

Now if we have an estimate of equilibrium composition and know which of mole 
fractions is to be held constant we can proceed to the solution of the system (1). 
On making use the Newton method to the logarithms of activities and choosing 
e.g. Xl = const we get 

[a In aJaz l ] .1ZI + [a In aJaz2] llz2 - [a In aJaX2] .1X2 = 

= In [Xi'Yi/(ZiYi)], i = 1,2,3 (16) 

The derivatives a In a/ax can be expressed in terms of the quantities Gll, G12, G22 
defined beforehand. It holds 

a In a./axl = GIl(1 - XI) - G12. X2' 
a In a./aX2 = G12(l - Xl) - G22 . X2 , 

a In a2/aXI = G12(1 - X2) - GIl . XI , 

a In a2/aX2 = G22(1 - x2) - G12 . Xl , 

(17) 
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Liquid- Liquid Equilibrium 687 

-GII.x, - GI2.x2' 

By determining the coefficients in system of equations (16) and by subsequent 
solving, we obtain fiz" fizz, fiX2' Let hold 

(I8) 

Now three cases may occur according to the magnitude of S. If S is less than the 
chosen value (e.g. 10- 4

) then the system of equations (16) can be considered solved. 
For an inaccurate estimation of coexisting compositions or in the proximity 

of sides of the concentration triangle it can occur that we should get too high value 
of S(S > .1,). In such a case it is recommended to use for the next iteration cor
rected values of increments given by the relation 

(fi(P)corrcct = (fi(P)ca'c ' LI,/S, (19) 

(P = X2' Z" Z2' 

where .1, is a chosen reducing parameter. During the computations carried out by the 
authors .11 = 0·05 was used. 

In terms of the found values fiz" fizz , fix 2 we will obtain a next approximation 
of equilibrium compositions and the solution of the system is repeated. As it has 
been said the usual number of iterations to reach S < 10- 4 was 4 to 5. 

After having solved the system (I6) we obtain a base for calculating the next 
iteration according to £qs (4), (5), (9) and (10) and we solve the system (16) once 
again. In this way we proceed along the equilibrium curve and the computation 
is very rapid . 

The needed relations for calculating the activity coefficients, G 11, G 12 and G22 
are given in Appendix 1 for the Redlich-Kister equation 5

. In Appendix 2 the relations 
are presented between the constants of the Margules 6 and the Redlich-Kister equa
tions which enable one to use the relations given in Appendix 1 as well for the systems 
for which the constants of the Margules equation (see e.g. 7

•
S

) are known. For n-com
ponent systems, analogous relations (for the NRTL equation9

•
10 as well) will be 

published elsewhere 1 !. 

It might seem that we considerably complicate the calculation by this procedure 
because besides the activity coefficients we need in addition the second derivatives 
of the Gibbs energy for calculating Sl and S 2' However, it is necessary to realize 
that these derivatives are required as well for calculating the coefficients in system (16) 
and for the determination of the next point approximation on the equilibrium curve 
according to £qs (4), (5), (9) and (10) and thus we have already calculated them. 
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688 Novak, Matous, Vonka, Pick: 

Calculation of the Compositions of Coexisting Phases for a Given Composition 
of a Heterogeneous Mixture 

According to the procedure outlined in a foregoing part, it is possible to determine 
the location of the equilibrium curve. We often meet the problem to find the com
position of coexisting phases for a mixture whose overall composition lies in the 
heterogeneous region. 

In Fig. 4 two coexisting phases correspond to the point W[WI' W2J and their 
composition is to be found. Let us assume again that we know a couple of coexisting 
compositions x~, x~ and z ~, z~ (this couple can be also the compositions of coexisting 
phases in the binary mixture). Let us define a function cP by the relation 

(20) 

This quantity gives the value of mole fraction of the component 2 in the heterogeneous 
region as a function of the composition of coexisting phase at cllmposition x~ , x~, 
of the slope of tie-line to and of mole fraction W I' If cP = W2 holds then the point 
of the binodal curve x~, x~ is identical with the point A. On combining Eqs (4), (5) 
with (20) we get 

From this equation we get (by putting cP = w2 ) 

8(z.z,J 

(22) 

FIG. 4 

Calculation of Coexisting Phases for a Gi
ven Heterogeneous Composition 
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Liquid-Liquid Equilibrium 689 

With (j determined in this way we will obtain the next approximation of composi
tion according to Eqs (4), (5), (9) and (IO). On solving the system (16) we will get 
a new composition and repeat the calculation. 

The experience which has been obtained with respect to the optimum value of (j 
holds of course in this case as well. At the beginning we get usuaJly (j too high 
(in absolute value) and it is necessary to diminish its value. The optimum value de
pends on the properties of the system, on the distance from the critical point and from 
the sides of triangle, etc. 

Calculation of the Critical Point 

The knowledge of the critical point, i.e. the point at which both phases merge, 
is significant both from the theoretical and practical point of view. The determination 
of the accurate position of the critical point is unrealizable by means of a procedure 
which would consist in the calculation of coexisting phases. From the thermodynamic 
viewpoint the critical point is defined on the basis of the validity of the relations2- 4 

D = IGll Gl2 1 = GIl G22 - (GI2)2 = 0 Gl2 G22 . . , (23) 

D* = I a~~;l a~g;21 = aD/ax! . G22 - aD/ax 2 . GI2 = 

= Dl . G22 - D2. GI2 = 0, (24) 
assuming that 

I 
aD*/ax! aD*/ax21 > O. 

GI2 G22 
(25) 

The quantities Gll, G12, G22 have the meaning defined before and Dl = aD/ax! 
and D2 = aDjaX2' Eqs (23) and (24) are two nonlinear equations which are sufficient 
to determine x 1k and X 2k • From the numerical standpoint we have a much simpler 
problem than in case of the system (16). Its laboriousness consists only in the fact 
that for calculating D* we need to know the third derivatives of the Gibbs energy 
with respect to composition and when applying the Newton method, even the fourth 

derivatives. 
On using the Newton method Eqs (23) and (24) turn into the system of equations 

where x~, x~ are the first approximations of composition of the critical point. 
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For the derivatives of D and D* in Eqs (23) and (24) we get 

aD/ax, = Dl = G111 . G22 + Gil. G122 - 2. G12. G112, (28) 

aD/ax2 = D2 = G112. G22 + Gil . G222 - 2 . G12 . G122, (29) 

aD*/ax , = Dll . G22 + Dl . G122 - DI2 . GI2 - D2 . G112 , (30) 

aD*/aX2 = D12. G22 + Dl . G222 - D22. GI2 - D2 . G122 , (31) 

where 

= Gl111 . G22 + 2. Gill. GI22 + Gil. 91122 + 
-2(GlI2)2 - 2. G12. G1112 , (32) 

D12 = a2D/ax l aX2 = G1112. G22 + Gill. G222 + Gil . GI222 + 
- G122. G112 - 2 . G12. Gll22, (33) 

D22 = a2 D/ax~ = G1I22 . G22 + 2. G112. G222 + Gil. G2222 + 
= 2(G122)2 - 2 . G12 . G1222 . (34) 

For the sake of concise denotation of the higher-order derivatives of the molar Gibbs 
energy with respect to the composition we use analogous abbreviations as ' formerly, 
e.g. 

G112 = a3(G/RT)/axi GX2 , 
G1112 = a4(G/RT)/ax~ ax2 , and so on . 

The relations for the third and fourth derivatives of the Gibbs energy with respect 
to composition of the Redlich-Kister equation are as well given in Appendix 1. 

The critical points for a number of systems were calculated in this way. Considering 
that with "normal" systems there exists only one or no solution. The calculation 
is not so sensitive to the first approximation. Only in some few cases, when the first 
approximation corresponded to the heterogeneous composition or provided that the 
critical point was in the vicinity of sides of the concentration triangle, 20 iterations 
were not sufficient. 

As one of interesting results we present the critical curve of a system which would 
conform to the relation 

(35) 
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Liquid-Liquid Equilibrium 691 

for b l3 = 3 in the dependence on b12 . The calculated compositions of the critical 
point are given in Table I. 

It is evident from the table that low values of b J 2 influence the critical point only 
little. When b l 2 approaches to the "critical" value bl2 = 2, then its influence on the 
posit ion of the critical point increases. 

This effect, in our opinion, explains the disagreeing view on the problem whether 
it is possible to predict the liquid- liquid equilibrium and, consequently, the critical 
point from the vapour-liquid equilibrium. If the effect of constants of the correspond
ing binary systems 1-2 and 2 - 3 on the liquid-liquid equilibrium is relatively small 
then the prediction is possible. With systems which are sensitive to the values of the 
above-ment ioned parameters, the prediction is made difficult or even impossible. 

The proposed method for the calculation of coexisting phases speeds up consider
ably the computation of all the curve of limited miscibility and at the same time 
enables to approach even very close to the critical point. A comparison with the 
methods published in the literature (NuJI lO , Renon and coworkers!l) cannot be well 
done because with the last methods, the first approximation is not uniquely specified, 
which has a substantial effect on the duration of computations. 

TABLE I 

Dependence of the Critical Point Position on the Parameter b J 2 (for b 13 = 3) 

bl2 xlk x2k x3k !:1x n/!:1b J 2 !:1x2k/!:1b J2 !:1 x 3k / !:1bJ2 

-0,2 0 '3202 0'3342 0·3456 0·065 - 0,007 - 0,059 

0 0'3333 0'3333 o· 3333 0·067 0 - 0,067 

0'2 0·3470 0·3342 0'3188 0·070 0'009 - 0,079 

0·4 0·3613 0·3369 0'3018 0·073 0·018 - 0,091 

0·6 0'3764 0·3416 0·2819 0'078 0'028 - 0'106 
0·8 0·3924 0·3487 0·2589 0·082 0'042 - 0 ,1 24 

1·0 0·4093 0·3585 0'2322 0'086 0'058 - 0' 144 

1·2 0'4269 0·3718 0'2012 0·090 0'076 -0'166 

1·4 0'4452 0·3898 0·1650 0·092 0'106 -0'196 
],5 0·4544 0·4011 0'1445 0·093 0'123 - 0'216 

1-6 0·4637 0,4]44 0' 1219 0·092 0·145 -0,237 
],7 0·4729 0·4301 0·0969 0·092 0·173 -0·265 

1'8 0·4821 0'4490 0·0689 0·091 0'209 -0'300 

1·9 0·4911 0'4719 0'0369 0·090 0'255 -0'345 

2·0 0·5 0'5 0·09 0·29 -0'38 
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APPENDIX 1. 

The First to Fourth Derivatives of the Gibbs Energy with respect to Composition in a Ternary 
System 

Q = GE/(RT) = x J x2[b l2 + Cu(XI - X2) + du(x I - X2)2] + 
+ Xlx 3[b l3 + C13(X I - X3) + ddXI - x 3)2] + 
+ X2X3[b 23 + C23(X2 - X3) + d23(X2 - x3)2] + 

+ XIX2X3[C + CIX I + C2X2] 

In 1'1 = b12 X2(1 - XI) + b13 X3(1 - x,) - b23 X2X3 + 
+ C12 X2[ XI + (XI - X2) (I - 2x l)] - 2X2X3(X2 - X3) C23 + 
+ C13X3[XI + (XI - x3)(1 - 2x l)] - 3X2X3(X 2 - X3)2 d23 + 
+ d I2 X2(X I - X2) [2xI + (XI - xJ (1 - 3x l)] + 
+ d'3X3(XI - X3) [2XI + (XI - x3) (1 - 3x l)] + 
+ x2x3[C(1 - 2x l ) + C l x l (2 - 3x l ) + C2X2(1 - 3x1)] 

In 1'2 = b12 x l(I - X2) - bl3 XIX3 + b23x 3(1 - x2) + 

+ CI2 XI[ - X2 + (XI - X2) (1 - 2X2)] - 2x jx 3(x j - X3) C13 + 

+ C23X3[X2 + (X2 - x3)(1 - 2X2)] - 3XIX3(Xj - X3)2 d l3 + -, 
+ d12x,(x, - x2) [-2X2 + (XI - x2) (1 - 3X2)] + 
+ d23 X3(X2 - X3) [2X2 + (X2 - x3) (1 - 3X2)] + 

+ x j x 3 [C(1 - 2x2) + c,x,(1 - 3X2) + C2X2(2 - 3X2)] 

In 1'3 = -b12x IX2 + b13X1(1 - x 3) + b23 X2(1 - X3) + 
- 2CI2XIX2(Xj - X2) + CUXj[ -X3 + (Xl - x 3) (1 - 2x3)] + 
+ C23X2[ -X3 + (X2 - x3) (1 - 2x3)] - 3d12 XIX2(X l - X2)2 + 
+ d 13 X I (X1 - x3) [-2X3 + (Xj - X3) (1 - 3X3)] + 
+ d23X2(X2 - X3) [-2X3 + (X2 - x 3) (1 - 3x3)] + 

+ x jx2[C(1 - 2x3) + C l x j (1 - 3X3) + C2X2(1 - 3X3)] 

Gll = a2(G/RT)/axi = 1/x1 + 1/x3 - 2b 13 + 2c12x2 - 6CJ3(XI - X3) + 
- 2C23X2 + 2d12X2(3x1 - 2X2) + 2d13[4x1X3 - 5(xj - X3)2 ] + 
+ 2d23X2(3x3 - 2X2) + 2x2[ -C + C1(X3 - 2x1) - C2X2] 
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GI2 = 82(Gj RT)j8x, 8X2 = Ijx3 + b 12 - b13 - b23 

+ 2C'2(X, - X2) - 2cd2x, - X3) - 2c23(2x2 - X3) + 
+ d I2 [3(x 1 - X2)2 - 2X1X2] + d13[4x1X3 - (XI - X3) . 

693 

. {4x, + 3(x, - X3)}] + d23 [ 4X2X3 - (X2 - X3) {4X2 + 3(X2 - X3)}] + 
+ C(X3 - X, - X2) + Clx1(2x3 - 2X2 - XI) + C2X2(2x3 - 2x, - X2) 

G22 = 82(GjRT)j8x~ = Ijx2 + Ijx3 - 2b23 + 
- 2C'2X, - 2C 13 X, - 6C 23(X 2 - X3) + 2d 12 X I (3x2 - 2x ,) + 
+ 2d,3XI(3x3 - 2x,) + 2d23[4x2 X3 - 5(X2 - X3)2] + 
+ 2x,[ -C - C,x, + cix3 - 2X2)] 

GUI = 83(GjRT)j8xi = Ijx~ - Ijxi - I2c
'
3 + 6d12X2 - 48d 13(X I - X3) + 

- 6d23 X2 - 6C,x2 

GIl2 = 83(GjRT)j8xi 8X2 = Ijx~ + 2C I2 - 6c13 - 2C23 + 

+ 2d1i3xl - 4X2) + 4d13(5x3 - 7x l ) - 2d23(7x2 - 3X3) + 
- 2C - 2C I (2x 1 + X 2 - X3) - 4C2 X 2 

GI22 = 83(GjRT)j8x 1 8x~ = Ijx~ - 2C I2 - 2c 13 - 6C 23 + 
- 2dd4x, - 3X2) - 2d 13(7x l - 3x3) - 4d23(7x2 - 5X3 ) + 
- 2C - 4C1 X 1 + 2cix3 - Xl - 2X2) 

G222 = 83(GjRT)j8x~ = Ijx; - Ijx~ - 12c23 + 6d l2 X l + 
- 6d 13 x, - 48d23(X2 - X3) - 6C2 X l 

Gl1ll = 84 (GjRT)j8xi = 2jxf + 2jx~ - 96d l3 

G2222 = 84 (GjRT)j8xi = 2jx~ + 2jx~ - 96d23 

Collection Czechoslov. Chern. Commun. [Vol. 43) [1978) 



694 Novak, Matous, Voiika, Pick: 

APPENDIX 2. 

Conversion of Constants of the Margules and the Redlich- Kister Equations 

Three-Suffix Margules Equation 

GE/(RT) = Xlxl(A11XI + AI1Xl ) + X(X3(A 3I XI + A\3X3) + 
+ x l x/A 32 Xl + A13 X3) + X I X2 X3(A 21 + AI) + A32 - CM) 

For recalculation the following equations hold: 

Au = bl2 - Ct2 

A21 = bl2 + CI2 

A 2 ) = b13 - C23 

A32 = b13 + C13 

C l2 = (A21 - A I2)/2 CI 3 = (A31 - A 13 )/2 C13 = (A32 - A13)!2 

C = -CM + (All - At2 + AD - A31 - A13 + A31 )!2 

Four-Suffix Margules Equation 

GE!(RT) = x,xlA2lXl + A'2x2 - DJ2 x,x2) + 
+ x,x3(A3I x l + A13x3 - DJ3 XIX3) + 
+ X2 X3(A 32 x Z + A23x3 - D23 x2X3) + 
+ XIXZX3(A1I + AD + A32 - X1CM - X 2 C IM - X3C 1M) 

All = bll - Cll + d t2 AI3 = b\3 - C13 + d l3 A23 = b23 - C13 + d13 

A21 = bu + C Il + d ll A3l = bl3 + c13 + d13 A32 = b23 + C23 + d23 

DI2 = 4d ll D13 = 4dl3 D23 = 4d13 

CM = -C - C I + Cll + C23 - c13 + 2d 12 + 2d13 + d13 

CIM = -C - C2 + CI2 - C I 3 + C23 + 2dl2 + d l3 + 2d23 

C2M = -C + CI2 - C I 3 + C23 + dl2 + 2d 13 + 2d23 

bl2 = (A12 + A21 - D12!2)/2 b13 = (A13 + A3l - DI3!2)!2 

CI 2 = (All - A 12 )!2 c13 = (A31 - A I3 )!2 

d13 = D13/4 

b23 = (A23 + A32 - D23!2)!2 

C23 = (A32 - A 23)/2 

d23 = D23/4 
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c = -e2M + (A21 - AI2 + AI3 - A31 + A32 - A 23 + Dd2 + DI3 + D23 )/2 

C I elM - CM + (D12 - D23 )/4 

C2 elM - CIM + (DI2 - DI3 )/4 
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